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Remarks on the Euler-Poincaré Characteristic
of a Hypersurface

Tzumi HASEGAWA
Department of Mathematics, Sapporo Branch, Hokkaido University of Education

E/NFLR Bl A 15—« B7 v VEEE DT
ACHEREBE RENR D R E

§ 1. Preliminaries.

1. Generalized Gauss-Bonnet formula.
Let M be a compact orientable Riemannian manifold of an even dimension #(=2m) through-
out this paper. The Euler-Poincaré characteristic X(M) of M is given by

(1) 2(M) = (2)e) { KV,

where ¢, is the volume of the Euclidian unit #-sphere, K, donetes the Lipschitz-Killing curvature
of M and dV is the volume element of M. This formula is called the generalized Gauss-
Bonnet formula ([27, [3], [4]).

2. The Gauss equation for a hypersurface.

Let M be an (n+1)-dimensional Riemannian manifold covered by a system of coordinate
neighborhoods {V ; x'} and g;, and R;ue, the metric tensor and the curvature tensor respetively.

Let M be covered by a system of coordinate neighborhoods {U ; #*} and s and Rasea, the
metric tensor and curvature tensor of M respectively. Let M be immersed in M and

xt=x*(u™)

be the local parametric expression of M.

Throughout this paper, Greek indices run over the range {1, 2, ..,7+1} and Latin indices

the range {1, 2, ..., 7}.

If we put
2) Bi=0.x%, 00=0/0uc,

then, the Riemannian metric of M induced from that of M is given by
(3 Gav= G2, BiBb

and the equations of Gauss are presented by
(4) Rapea= Rz#quéB’ﬁBZBm — HocHpa+ HaaHye,

where Ha, are the components of the second fundamental tensor H and Ha= Hpa.

§ 2. Some results.

Theorem 1. Let M be a hypersurface of a space of constant curvature c¢=0 (resp.
¢=0). If the second curvature tensor is always positive (rvesp. negative), then %A(M) (resp.

1)
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(=1)™x(M)) is non-negative.
Proof. Because M is a space of constant curvature,

(5) Rx;mu e C@'xvgpw - EMZ&V)-
From (3), (4) and (5), we have
(6) Rapea= — C(ga,cgbd— gadgbc) - (Hachd’“ Hadec)»

We can choose the orthonormal coordinate system for a tangent space of M so that Hu=
0(a 5~ b) at any point of M.
With respect to this coodinate system,

kB0
) H=| k.
0
where &y, By, ..., By are the eigenvalues of H.

If a, b, ¢, d are different mutually,
f — Rapay=C + kaks,

(8) IR.m.;ZO and Rabw:O.

If, in particular, H is positive (resp. negative) and ¢==0 (resp. ¢=0),
—Rabub:?—_o (resp. —Rababéo).

In this case,

) (=1l = 5"711T!sil' v tnelt I Ryiogy g Rin_inin—qin =0
Comparison with (1) completes the proof. Q.E.D.

Corollary. Let M be a hypersurface of a space of constant curvature. If the sectional
curvature of M is always non-negative (vesp. non-negative), then X(M) (vesp. (—1)"X(M)) is
non-negative.

Similarly we have

Theorem 2. Let M be a hypersurface of a conformally flat space M. If the sectional
curvature of M is always non-negative (resp. nonpositive) and

Exprng =agZa + BHas,
where « and B are the funtcions on M, then (M) (resp. (—1)"%(M)) is non-negative.

Remark 1. If f=0 in the Theorem 2, then M is an Einstein space. In this case M is
the space of constant curvature consequently.

Remark 2. It is sufficient that a neighborhood of any point of M is immersed in M in
these theorems.
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