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Abstract

We investigate cyclic parallel hypersurfaces in a Sasakian space form and prove some
theorems.

§1. Introduction.

Let M be a submanifold in a Riemannian manifold . If the second fundamental form o
of M in M is cyclic parallel, that is,

(Vxo) (Y, 2)+ (Vv o) (Z, X)+(Vz0) (X, V) =0

for arbitrary vectors X, Y, Z tangent to M, then M is said to be cyclic parallel.

Recently, U-H. Ki [5] has proved that a real hypersurface M in a real 2m (>4)-dimen-
sional complex space form M (¢) with nonzero constant holomorphic sectional curvature ¢ is
cyclic parallel if and only if pA=Ag, where ¢ denotes the structure tensor induced on M by
almost complex structure of M (¢) and A the second fundamental tensor derived from the unit
normal.

In this paper, we investigate cyclic parallel hypersurfaces in a Sasakian space form and
prove the following theorems :

THEOREM 1. Let M be a cyclic parallel hypersurface in a Sasakian space Sform M (¢), c*
1, of dimension 2m+1(>5). Then the structuve vector field & of M (c) is tangent to M.
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108 Izumi HASEGAWA

THEOREM 2. Let M be a cyclic parallel hypersurface in a Sasakian space form Mc), c+
1, of dimension 2m~+1(>5). Then the structure tensor ¢ induced on M and the second
Fundamental tensor A derived from the unit normal commute into each other, that 1s, pA=Ap.

THEOREM 9. Let M be a hypersurface in a Sasakian space form M (c), c+—3, of dimen-
sion 2m~+1(>5). If the structure tensor @ induced on M and the second fundamental tensor
A derived from the unit novmal commute into each other, then M is cyclic parallel.

THEOREM 10. Let M be a complete hypersurface with pA=Ag@ in a Sasakian space form
M (¢) of dimension 2m—+1(>5), where @ is the structure tensor induced on M, and A the
second fundamental tensor derived from the unit normal. If the structure vector field Zof M)
is not tangent to M evrywhere on M, then M is a totally umbilical hypersurface with constant
mean curvatuve, isometric to an orvdinary spherve, and c=1.

Throughout this paper, we assume that all objects under consideration are differentiable of
class C® and that all manifolds are connected unless otherwise stated.

The author would like to express his gratitude to Professors T. Nagai and H. Kojyd for
their valuable suggestions and criticism.

§2. Preliminaries.

This section introduces some definitions and the fundamental properties used throughout
the paper.

(1) Let M bea (2m+1)-dimensional Sasakian manifold. We denote by (@, &, 7, <, >)
The Sasakian structure of M, where ¢ is a tensor field of type (1, 1), & a vector field, » a
1-form and <, > a Riemannian metric. The structure tensors satisfy the following equa-
tions :

P X=—X+7(X)¢&, @&=0, 7(pX)=0, 7(&=1,
(2.1) (X, Y>HX, oY>=0, 7(X)=(& XD,
Vx&=9X, (Vx@)Y=n(Y)X—<X, Y>&

for any vector fields X, Y tangent to M, where ¥V denotes the Riemannian connection of M.
The Riemannian curvature tensor B of the Sasakian manifold M, defined by R(X, ¥Y)Z=
VxVy Z—VyVxZ —xvy1Z, satisfies

R(@X, oYV Z=R(X, V) Z—<Y, XXX, 25Y —Y, o2>pX <X, 90209V,
R(X, oY) Z=—R(pX, Y)Z—Y, o0 X +(X, @Z>Y Y, Z>pX <X, Z>¢Y
and

R(X, Y)e=n()X—7(X) Y.

(2.2)

A Sasakian manifold M is called a Sasakian space form if M is of constant ¢-holomor-
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Cyclic Parallel Hypersurfaces in a Sasakian Space Form 109

phic sectional curvature. The Riemannian curvature tensor B of the Sasakian space form M (¢)
of constant g-holomorphic sectional curvature ¢ takes the following form :

R(X, Y)ZzCTH«Y, ZI>X <X, Z>Y }+ Czl n(X)g(2Z)Y (V)5 X
(2.3) X, D9(V)E—<Y, Z>7(X) E+<X, oZ>pY

—Y, 20X +2K&X, oY >pZ}.

(2) Let M be a Riemannian manifold and M a Riemannian manifold isometrically
immersed in M. Then M is called a submanifold in /7. Particularly, M is called a hyper-
surface in M if codim M =1. The Riemannian meteic on /7 as well as the induced metric on
M is denoted by <, > . Let ¥V and V be the Riemannian connections on M and M,
respectively. Then the Gauss and Weingarten formulas are given by
(2.4) VxY=VyxY+o5(X Y)
and
(2.5) ViN=—AnX+V4N
for any vector fields X, Y tangent to M and N normal to M , where ¢ denotes the second
fundamental form, Ax the second fundamental tensor at N and V<L the linear connection
induced in the normal bundle 71 M, called the normal connection. The second fundamental
tensor Ay is related to the second fundamental form o by
(2.6) An,X, Y>=<o(X, Y), N> .

Denoting the Riemannian curvature tensors of M and M by R and R respectively, the
equations of Gauss and Codazzi are given by
2.7 W,R(X,Y)Z>=XW,R(X, Y)Z>+<c (W, X), o(Y,Z)0—<e(W,Y), 06X, 2
and
(2.8) KR(X, Y)Z, N>={(Ixe) (Y, Z), N>— (Vyo) (X, Z), N>
~ for any vectors W, X, Y, Z tangent to M and N normal to M, where the first covariant
differentiation V¢ of ¢ is defined by
(2.9) (Vx) (Y, Z)=v+0(Y, Z)—c(VxY, Z)—c(Y, Vx Z).

A submanifold M is called a parallel submanifold if ¢ is parallel, i. e., ¥V ¢=0 identically.
A submanifold M is called a cyclic parallel submanifold if the cyclic sum of Vxa) (Y, 2)
vanishes identically, i. e.,

(2.10) (Vx o) (Y, 2)+ (Vv 0)(Z, X)+(T26) (X, Y)=0
for any vectors X, Y, Z tangent to M. It is easily seen that condition (2.10) is equivalent to
(2.11) (Vxe) (X, X)=0for all X TH.

It was proved in [2] that any geodesic hypersphere in a complex space form with non-zero
constant holomorphic sectional curvature is cyclic parallel and not parallel.

Let M be submanifold in a Sasakian manifold M with structure (g, &, 7, <, >). M is
said to be anti-invariant if
(2.12) @ (T M) C T.M for each xS M.

We have the following well-known lemma :

LEMMA 1(e.g., see [9]). Let M be an n-dimensional submanifold in a Qm~+1)-dimen-

sional Sasakian manifold M. If the structure vector field € is normal to M, then M is anti
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-invariant, and m>n.

(3) Let M be a hypersurface in a (2m+1)-dimensional Sasakian manifold M with
Sasakian structure (@, & 7 <, >). A unit normal & to M may then be chosen. For this unit
normal &, we put

fi=ne), € i=—ge, &:=E—fe, pX =X <&, XDe

2.
@13 AX :=AX and KX, V> = <AX, Y>=<o(X, Y), &

for any vectors X, Y tangent to M. By the properties of the Sasakian structure, the following
relations are given :

g, &>=0, lel=1&l12=1-72 o@t=—/f5 o@5=1,

P2 X ==X+ X0E+n(X) &, (oX, Y>=—KX, ¥

Vx =pAX—f X, Vx &=@X+fAX, Xf=<;—A& X,
(Vx @) Y=KE YOAX—CAX, YE+7(Y)X—<X, YO&

(2.14)

for any vectors X, Y tangent to M, where »(X) = <§, X .

A scalar function p 2=—§-1-7};L—trace A is called 2 mean curvature of M in M. M is said to be
totally umbilical if AX =pX for any vector X tangent to M. Particularly, M is said to be
totally geodesic, if AX =0 for any vector X tangent to M. If the structure vector field £ is
tangent to M and

(2.15) szzfn”ilp(X—n(X)5)+n(X)Ag+ CAE, X>&

for any vector X tangent to M, then M is said to be totally contact umbilical. When a totally
contact umbilical hypersurface M has vanishing mean curvature, then M is said to be totally
contact geodesic.

In the following, the ambient Sasakian manifold is assumed to be a Sasakian space form
M (¢c) of dimension 2m+1. Then the equations of Gauss and Codazzi for M in M (c) are
respectively rewritten as :

R(X, Y)Z:Ljfﬁ‘—«x XX, Y+ C;‘l (X)) (DY =0 (V) 7(2) X

2.16) X Do (V) E—<Y, Zon(X)E+<X, 9Z>Y —<Y, pZ>0X
FUX, @Y >pZ)+CAY, ZYAX —(AX, Z>AY.
(TA) Y — (V yA) X = 021 (F (V)X —7(X) V) +<E X>pY —<&, YooX
2.17)
FUX, pYOE),
i e,
(V) (Y, Z) = (V) (X, 2) =S (7 (YK, D=0 (<Y, 22)

+<E&, Y X, @Z>—<& X XY ,@Z>+2K¢E, ZXX, YD}

LEMMA 2. Let M be a hypersurface in a Sasakian space form M(c). Then M is cyclic
parallel if and only if

&
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(Vxh) (Y, Z) =—S7L (e, YXXX, 9Z>+<€, 2X<X,07>)
(2.18)
=L (X ¥37(2)+<X, 27 (V) =KV, Zo9(X))

Jor any vectors X, Y, Z tangent to M.

The proof for Lemma 2 is simple and has been omitted.
Lemma 2 simply leads to the following

REMARK. If there exists a parallel hypersurface in a Sasakian space form M (c) of
dimension 2m-+1(>5), then c=1.

L

It is known that a totally umbilical hypersurface M in a Riemannian manifold 7 is parallel
if and only if the mean curvature p of M in M is a constant. For Sasakian geometry, we have

LEMMA 3 [4,8]. Let M be a totally umbilical hypersurface in a Sasakian space form M (¢)
of dimension 2m~+1(>5). Then c=1 and M is parallel.

§3. Cyclic parallel hypersurface in a Sasakian space form.

Let M be a cyclic parallel hypersurface in a Sasakian space form M (¢). By Lemma 2, we
have

(VR(X, Y, Z) :=(Vxh) (Y, 2)

G _—Cz—l«g, YXX, pZ>4<E, ZXX, o¥'))

+ 61-21 (KX, You(2)+<X, DY) —2KY, Z>5(X))

for any vectors X, Y, Z tangent to M. By differentiating this covariantly along M and
making use of (2. 14), we find

(VR (W, X, Y, Z2):=(Vw(Vh))(X Y, 2)

6—4_1{ KAW, XX<E, YO—<XAW, YXX& X>+<W, Xon(Y) —<W, Y>7(X))<E 2>

+ (AW, XKE&, Z>—<AW, ZXXE& X>+<W, X>5(Z) —<W, D (X))KE YD
3. 9) X, @YD K@AW, Z>—fLW, Z25) +<{X,0Z> K@AW, Y>—f<W, V>)}

+ 01‘21 (E—AE, WYX, Yo7(2)+<X, Z>n(Y)—KY, Z>5(X))

_.|_

LA YO oW, 22+FAW, 25) <X, 2> (oW, Y>+FAW, ¥5)
— XY, Z>(oW, X>+fAW, X>)}

for any vectors W, X, Y, Z tangent to M.

(6)
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Substituting this and (2. 16) into the Ricci formula given by
(VIR (WX Y, Z2)— (I (X, W, Y, Z)=—<R(W,X)Y,AZ>—<R(W, X) Z,AY),
it follows that

CAW, YIXA?X, Z>+<AW, Z>}XAX, Y>—<AX, YXXA W, Z)—<AX, Z><A*W, Y>

=(—%'§—+—Cﬁ—l—f2) AW, YXX, Z5+<AW, ZXX, Y>—<AX, YXXW, 2>

—<AX, ZXW, ¥?)
_ czl (AW, Y& X>—<AX, YXXE& WHHLW, Y5 (X) —<X, Yon(W))KE 2>

+CAW, Z)XE, X>—<KAX, ZXXE WHHLW, o5 (X) —<X, Zon(WLKE YD
—{pA—Ap) W, Y XXX, 2>+ {pA—Ap) X, YW, 92>

(3.3 —(pA—Ap) W, Z>{(X, oY >+ <(pA—Ap) X, ZXW, 9Y>
+2{(pA—A@) Y, ZXW, oX>
AW, Yoq(X)n(Z)—<AX, Yo>5(W)q(Z)+<AW, Z>7(X)7(Y)
—AX, Zog(W) (V) +7(W)KX, YXXAS, Z>—n (X)W, YXXAE, Z>
+7 (W)IKX, ZX>XAE, YOo—n (XKW, Z)<AE, Yo}

+——6g1 FUW, @Y XX, Z>—<X, @Y XW, Z>+W, pZXXX, Y>
(X, ZAW, YO+UW, XY, Z>)

n 01‘21 CE—AZ, Wy (5 (Y)X, Z>+n(2)<X, Y>—27(X)<Y, 2)

. clEl E—AE, X> (Y)W, Z>+5(Z)KW, Y>—29(W)KY, 25)

for any vectors W, X, Y, Z tangent to M.
THEOREM 1. Let M be a cyclic parvallel hypersurface in a Sasakian space form Mc), c*
1, of dimension 2m—+1 (>5). Then the structure vector field E of M(c) is tangent to M.
Proor. Let {E,------ . E»m) be an orthonormal basis of T.M for any point xEM.
Substituting ¥ =Z=E; into (3.3) and summing up ¢ from 1 to 2, we have
(c=D{2f0X —7(X) (6~ A&) +{{— A& X>E}=0
from which
(3.4 U X =3f K& X >E+7(X)&)—fLAEX>E+n(X) A&
for any tangent vector X of M, because of c+1.
Substituting W =Z=E; into (3. 3) and summing up ¢ from 1 to 2m, we obtain
(tr A)<A%X, Y>—(tr A®<AX, V>

—(£EB oLy (o AKX, Yo —2mCAX, V)~ (=1 {pAgX, ¥>

- C“g—’l ALK, Y>+——-—Cgl (KAE, XXXE, YO+CAE, YO~ (1+f)<AX, Y))

(3.5

=l AV (e, XKE, Yot (X) p(¥)) +e= Lt pox vy
4 3

(6)
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+Ae=DBmED) oy cag, vo+ (=D ont2) , (vycag, x>

_ (=1 %37%‘1‘1) 7 (X)<€, Y>_—(C—_1)%—L)77(Y)<§ X5

for any tangent vectors X, Y of M, where g :=<A¢&, &
Substituting X =¢ into (3. 5), we see that

(tr A)A2E— (tr AP A&

—¢ c+3 + c—1 £2) ((tr A) E—2mAE— (c—1) fpA&+ c—1 13y+ (5m+3) f2

(3.6) 4 12 5

— @m+1)}e— Cgl {Bm+7) 2= Bm+1) }As+ 6151 (2mB—3(tr A) 1—7?)}2,

where y 1=<(A¢, & . Substituting Y =¢& into (3.5), we find

(tr A) A*E— (tr A A

_ (_Cli+%f2) ((tr A) £—2mAE) — (c—1) fpA€

3.7) _
( + 661 {3y—(m+3) f2— (m—1)}¢&

— S {(m+8) = (m—1)) A+ LiGmtap-sur 2 0—r7))e

From (3.6) and (3.7), we obtain

(3.8 (1= Ag=(1-3/ ¢+p2,

because of ¢#+1. From (3.4) and (3.8), it follows that
(3.9) HA=A X< XDe—7(X) &} =0

for any tangent vector X of M.

Let M, be a set consisting of points of M at which the function 1— /% does not vanish. By
virtue of Lemma 1, M, is a nonempty open set in /. There exists a nonzero tangent vector X
at each point of M, such that <X, &= <X, & =0, because dimM >4. Thus, from (3.9), we
can see that the function f vanishes identically on M,. Since M, is open and closed, we find
M,=M. Consequently the structure vector field £ of M (¢) tangent to M. Q. E. D.

THEOREM 2. Let M be a cyclic parallel hypersurface in a Sasakian space form M (c), c+
1, of dimension 2m~+1 (>5). Then the structurve tensor @ induced on M and the second
Jundamental tensor A derived from the umit normal commute each other, that is, pA=Agp.
PrOOF. Combining (2.14) with Theorem 1 and using Lemma 2, we obtain
(¢A—A¢)XZVXQ'—Aan:VXAf—AVXé}': (VxA)E=0
for any vector X tangent to M. Q. E. D.

LEMMA 4. Let M be a cyclic parallel hypersurface in a Sasakian space form M (c), c#1,

@
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of dimension 2m~+1 (>5). Then it follows that
(3.10) Aé=af+&,

(3.1D « is constant on M

and

(3.1 AX=eAX +- S x—CTlie, ety (08

for any tangent vector X of M, where a :=<A§, &> .
PrROOF. By Theorem 1 and Theorem 2, (3.5) reduces to
(tr AY<A:, X, Y>—(r A% <4X >

(3.13) =—C—‘§3—{(tr AKX, Yo—2m<AX, ¥Y>)

+"*“C§1 (CAX, YO—<AE, XE, YO+<CAE, YXXE X>—<& Xon(Y)

+<6, V(X)) —<7h(r A){<g, X6 Yr+0(X)7(1))

for any tangent vectors X, Y of M. Interchanging the role of X and Y in (3. 13), we see that

(3.14) &, XDAE+7(X) E=<AE, XDE+KE, X0&

for any tangent vector X of M. Substituting X=¢& into this equation, we find (3.10).

Combining (3.1) with (3.10) and using (2.14), it follows that

(3.15)  Xa=(Vxh) (& &) +2CKAE, Vx> =2€al+&, pAX>=0

for any tangent vector X of M. That is , « is a constant on M. Differentiating (3.10)

covariantly with any tangent vector X of M, and using (2. 14) and (8. 1), we obtain (3.12).
Q.E. D.

PROPOSITION 3. Let M be a cyclic parallel hypersurface in a Sasakian space form M(c),
c*1, of dimension 2m—+1 (25). If a*+c+3=0 on M, we have
(3.16) AX=T(X+E X>6—7(X)§) +<¢ X0&+7(X)¢

for any tangent vector X of M.
PROOF. In this case, by Lemma 4, we see that M has three constant princical curvatures

| 2 — ] 2
%, at 2“ +4 and & 2“ +4. Their multiplicities are 2m—2, 1 and 1 respectively.

Therefore we obtain (3. 16). Q. E.D.
We have the following corollary of Proposition 3 :
COROLLARY 4. Let M be a cyclic parallel hypersurface in a Sasakian space form M(=3) of
dimension 2m+1 (>5). If there exists a point x of M satisfying a(x) =0, then M is totally
contact geodesic.

PROPOSITION 5. Let M be a parallel hypersurface in a Sasakian space form MQ). If the
Function f is a constant on M, then it follows that
(3.17) Ag=¢,

®)
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(3.18) Af=al+ ¢,
(3.19)  f=0 (i e., £ is tangent to M),
(3.200 @A=Ag
(3.21) a 15 a constant on M
and
(3.22) A’ X=aAX+X
Jor any tangent vector X of M, where a = C4E, & .

PrOOF. Since f is a constant on M, (3.17) is obvious. Substituting Y=¢ and W=2=
& into (3.3) and using (3. 17), we obtain

(1—-fHAt=at+1—-F?¢E.

By Lemma 1, 1—/2 is a positive constant on . Thus
_ «a
(3.23)  Ag=T%mete.
Further, since M is parallel, we get

0=(VxA)&
=V AE— AV x&
=Vxt—A(pX+AX)
=(pA—Ap) X —f (A’ X+ X)

(3.24)

for any tangent vector X of M. Substituting X=¢& into (3. 24), we have
(.25 f(Zme+as) =0

This shows (3.19), from which (3.18) and (3.20) are obtained. By a similar argument as the
proof of Lemma 4, we obtain (3.21) and (3.22). Q. E. D.

§4. Hypersurfaces with 9 A=A ¢ in a Sasakian space form.

Let M be a hypersurface with pA=Ag in a Sasakian manifold M. We can see that
M, = {x€M | f*(x)*#1} is a nonempty open set in M, £+0 and &+0 everywhere on M,.
From simple calculations, we get

Af=al+yE,
(4.1 AE=yE+ B2,
fla—pB)=0 and fy=0 on M,,

where a:= <‘{1§ £ 545 & AL D _ <AED

72 1—fF2 and y = 1—7/2 1—f2
LEMMA 5. Let M be a hypersurface with pA=Ag in a Sasakian manifold M. If f is a
constant function on M, then it follows that
(4.2) AE=¢, f=0, At=at+e,
(4.3) Xa=(Ea)<¢, X,
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(4.4)  AX=aAX+-Tx- e Xe+n (09,

(4.5) (VxA)&E=0
and

(4.6)  (VxA) e=—ETH0X +(Ca)<E, ¢

for any tangent vector X of M.
Proor. From (2.14) and (4.1), we have (4.2) everywhere on M. Differentiating A&
covariantly with any tangent vector X of M and using (2.14) and (4.2), we obtain
4.7 (VxA) e=— A X + apAX + X + (Xa) €.
Using the equation of Codazzi (2.17) and (4.7), we have

c+3
4

(4.8) (Xa) E— (VA) X = pA*X — apAX —

X,
from which
(4.9) (Xa) <€, Yo —(Ya)&, X>=2{<pA?X, Y>—alpAX, Y>~—C—jl;3—<¢X, Y3}

for any tangent vectors X, Y of M. Substituting ¥ =¢ into (4.9), we find (4.3). Substitut-
ing (4.3) into (4.9), we have

(410 pA*X —agAX ——F3pX =0
for any tangent vector X of M. From (2:14) and (4.10), we obtain (4.4). (4.5) is obvious.
From (4.3), (4.4) and (4.7), we have (4.6). Q.E.D.

PROPOSITION 6. Let M be a hypersurface with pA=Ag in a Sasakian space form M(c),
c#—3, of dimension 2m~+1(>5). If f is a constant function on M, then M is cyclic parallel.
Proor. Differentiating (4.4) covariantly with &, we find
(4.11) (€a) (AX —Kal+ &, X>E—KE, X>&)=0
for any tangent vector X of M.
Let M, be a set consisting points of M at which the functoin {& does not vanish, and
suppose that M, is not empty. From (4. 11), it follows that
AX =(at+ &, X>E+<KE, XD&
for any tangent vector X of M,. Combining this with (4. 4), we find
(c+3) (X —<&, X>E—7(X)&) =0
for any tangent vector X of M,. Thus the assumption of M, produces a contradiction because
c+—3 and dim M >4. Accordingly we obtain
(4.12) Ea=0 (everywhere on M).
Therefore, from this and (4.3) we see that « is a constant on M. Using this fact, (4.6)
reduces to

c—1
4

for any tangent vector X of M.

(4.13) (VxA)e=— X

(10)
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Differentiating (4.4) covariantly with any tangent vector Y of M , we obtain

(VyA) AX+A(V A) X = (V yA) X ——E=1
(4.14) 4

+oY, X>&+7(X) oY}

{{@AY, X>+<E X>pAY

Interchanging the role of X and Y in the above equation and combing these equations with the
equation of Codazzi (2.17), we get

(VxA)AY — (VyA)AX

(4.15) c—1 .

ZT{<af§'+é,’, XopY —<ab+E&, YO>pX —2€{pAX, Y&},
from which

(VxA)AY —A(VZA) Y
(4.16) .

}1 {(@X, Y>(ab+8) —<ab+&, V>pX —(pAX, Y>E+<E, VrpAX).

From (4.14) and (4.16), we have

w1 2IA)AY =a (VA) ¥V + 621 {alpX, Y>E—ale, VX

—22{@AX, Y>§-27(Y) X}

for any tangent vectors X, Y of M. Combining this with (4.4), it follows that

(4.18) (@ +c+3) {(Vxd) Y +T(<oX, Yoet<E, ¥o0X) ) =0

for any tangent vectors X, ¥ of M. Thus M is cyclic parallel provided that a2+ c+3+0.
Next, assuming that a®+c¢+3=0, (4. 2) and (4. 4) show that M has three constant

a atva*+4 and a— v a*+4
2 ’ 2 :

principal curvatures 5

Their multiplicities are 2 —2, 1, and
1 respectively. This gives

(419 AX=FT(X+ X0&—7(X) ) +<& X>&+7(X) €

for anybtangent vector X of M. Differentiating this covariantly, we find

(V3A) Y = (5+1) (pX, YYE+(E, YrpX)
(4.20)

=7 (oX, YOEHE, VrpX)

for any tangent vectors X, ¥ of M. Thus M is cyclic parallel because of Lemma 2.
Q. E. D.
From the proof of Proposition 6, we have the following
REMARK. Let M be a hypersurface with @A=Ag in a Ssasakian space form M (—3). If
J is a constant and Ea=0 everywhere on M, then M is cyclic parallel.

a1
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Let M be a hypersurface with pA=Ag in a Ssasakian space form M (¢) of dimension
om~+1(>5) and M, a set consisting of points of M at which 0</*<1. Assume that f is a
nonconstant function on M, then M, is a nonempty open set in M because of Lemma 1. Thus
M, is a hypersurface (not necessarily connected) in M (¢), and we have

THEOREM 7. Let M be a hypersurface with pA=Ag@ in a Ssasakian space form Mc) of
dimension 2m+1(>5). If f is a nonconstant function on M, then M, is a totally wmbilical
hypersurface. Therefore c=1 and M, is parallel (and the mean curvature on each connected
component of M, is a constant).

ProOF. For this case,

(4.21) At=at

and

(4.22) AE=a&

on M,, where a .= <€1-§-f§> = <‘;1_g_’ff> . Differentiating (4. 21) and (4. 22) covariantly

with any tangent vector X of M, and using (2. 14), we obtain

(4.23) (VxA) 6= (Xa) E+a(pAX —f X) —@A* X +fAX

and

(4.24) (VxA) &= (Xa)E+a(pX +fAX) —pAX —fA*X.
Combining (5.24) with the equation of Codazzi (2.17), it follows that

(VA) X = (Xa) &+ a(pX +fAX) —pAX —fA*X

4.25 _
(4.2 - C4lf{(1~f2)X+3<§, Xoe—n(X) &}

for any tangent vector X of M,. Taking the inner product with &, we have
(4.26) (1—7?) (Xa) = (&a) 7 (X)

for any tangent vector X of M,. Substituting X =¢ into (4. 25), we find
(4.27) ta=0 and &Ea=-—(c—1)f1Q—f* on M.

From (4.26) and(4.27), we get

(4.28) Xa=-(c—1f n(X)

for any tangent vector X of M,. Using this equation, (4.25) reduces to

(4.29) (VA) X=a (X +fAX) —¢AX~fA2X——-C—_Z——1—f{ (1—f) X +3KE X>E+37(X) &}

for any vector X tangent to M,. Taking the inner product with any tangent vector ¥ of M,
and interchanging the role of X and Y, we find

(4.30) AX=aX

for any tangent vector X of M,. Thus M, is a totally umbilical hypersurface with mean
curvature p=a. Therefore ¢=1, M, is a parallel hypersurface and the mean curvature a
constant on each connected component of M,, by virture of Lemma 3. Q. E.D.

PROPOSITION 8. Let M be a hypersurface with pA=Aq in a Ssasakian space form M (c)

(12)
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of dimension 2m~+1(>5). If f is a nonconstant function on M, then M is parallel and c=
1. '

PrOOF. By Lemma 2, M, := {x€M | 0<f2(x)<1} isa parallel hypersurface in M (¢)
and ¢c=1. We put M;:= {x€M | | VA (x)#0} . Suppose that M, is not empty, then
since My <M — M., it follows that

fx)=0 or f*(x)=1 for any x=M,.
If there exists some point x of M, satisfying f?(x) =1, we see that U N M,*¢ for any
neighborhood U of xin M, i. e,, x is an accumulation point of M,, because of Lemma 1. Thus
we have [ VA | (x)=0. This is a contradiction.
Therefore we obtain M; C {x&M | f(x)=0} . In this case, by Proposition 6, M; is cyclic
parallel. Since ¢=1, M; is parallel. Therefore the assumption of M; produces a contradic-
tion. Accordingly M is parallel. Q. E. D

Proposition 6 and Proposition 8 assert the following
THEOREM 9. Let M be a hypersurface with pA=Ag in a Sasakian space form M (c), c+
—3, of dimension 2m~+1 (>5). Then M is a cyclic parallel.

THEOREM 10. Let M be a complete hypersurface with @A=Agp in a Sasakian space form
M (c) of dimension 2m—+1(>5). If f does not vanish everywhere on M, then M is a totally
umbilical hypersurface with constant mean curvature, isometric to an ordinary sphere, and c=
1.

PROOF. By Lemma 5, f is a nonconstant function on M. Using Lemma 1, we see that any
point of M is an accumulation point of M,. Thus M is a totally umbilical hypersurface with
constant mean curvature p =, by virtue of Theorem 7. In this case, we have

(VVAX Y):=(Vxdf) Y=—(1+a?) f{X, V>
for any tangent vector fields X, ¥ on M. By virtue of Obata’s theorem [6], we see that M
is isometric to an ordinary sphere of radius v 1+ «2. Q.E. D.

§5. Cyclic parallel and totally contact umbilical hypersurfaces.

Let M be a totally contact umbilical hypersurface in a (2m +1) -dimensional Sasakian
manifold M and p the mean curvature of M in M. Then the second fundamental form % has
the following form :

r(g, X)=<¢ X,
(5.1 X, V)=alX, Y>—9(X)n(Y)}+7(X) (& V) +7(Y) k(& X)
=alX, V> —7(X)7(Y) }+7(X)KE YO+7(V)<E, XD,

where « ::23:'11/)' (5. 1) is equivalent to
(5.2) Aé=¢, Aé=af+¢& and @A=ag (=Agp).

(13)
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PROPOSITION 11. Let M be a totally contact umbilical hypersurface in a Sasakian manifold
M. Then M is cyclic pavallel if and only if the mean curvature p of M in M is a constant.
In this casa, we have
(Vxh) (Y, Z)=<pX, YXX& Z>+LpX, ZXX§, Y.
ProoF. Differentiating (5. 1) covariantly and making use of (2.14), we find

(Vi) (Y, Z) =—aleX, Yon(2)+<¢X, Zon(Y) }+<@X, Y& D>+<pX, ZXE, Y
(5.3) +{pAX, Yon(2)+<@AX, Z>7(Y)+(Xa) KY, Z>—q(Yy5(Z)).
=<X, Z>X&, Z>+KX, ZXE, Yo+ (Xa) KY, Z>—5(Y) (D).

From this, we get

(Vx WY, 2+ Vy (Z X)+(Vz (X Y)
(5.4) = (Xa) KY, Z0—7(Y) () +(Ya) KZ, X>—7(Z) (X))
+(Za) KX, YO —n(X)5(Y)).

If M is cyclic parallel, we obtain
(5.5) Xa=&x=0 (X1&).
Thus we see that « is a constant, i. e, p 1S a constant.
Conversely, assume that p is a constant. From (5. 4), we see that
(Vxh) (Y, Z)+ (Vyh) (Z, X)+ (V0 (X, Y¥)=0,
that is, M is cyclic parallel. Q. E. D.

PROSITION 12. Let M be a totally contact umbilical hypersurface in a Sasakian space form
M (¢) of dimension 2m~+1(>5). Then c=—3 and M is cyclic parpllel.

ProoF. Since M is totally contact umbilical, we have
(5.6) (VxA) Y = (Xa) (Y —7(Y) &) +<{pX, Y>E+LE YopX
for any tangent vectors X, Y of M, where a: :#—Tp' Using the equation of Codazzi
(2.17), we obtain '

(Xa) (Y =7(Y)&) — (Ya) (X —7) (X) &)

5.7
=—C{—3~(<g-, X3V —<¢, YooX +2(X, Y >E)

for any tangent vectors X, Y of M. Since dim M >4, there exists a nonzero tangent vector
X such that <&, X>=#(X)=0. Therefore, substituting ¥ =¢ into (5.7) and taking the inner
product with @X, we have c=—3. From this and (5.7), we have

(5.8 (Xp) KY, Z>—5(Y)5(Z))=(Yp) KX, Z>—p(X)n(2))

for any vectors X, Y, Z tangent to M. Sustituting'Y=Z =¢ into (5.8), we see that p is a
constant. By virtue of Proposition 11, M is cyclic parallel. Q. E. D.

(14)
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