{"created":"2023-06-20T14:00:49.598978+00:00","id":6945,"links":{},"metadata":{"_buckets":{"deposit":"fc8bbdb5-03dd-44f4-92ed-70e2a3bb890e"},"_deposit":{"created_by":2,"id":"6945","owners":[2],"pid":{"revision_id":0,"type":"depid","value":"6945"},"status":"published"},"_oai":{"id":"oai:hokkyodai.repo.nii.ac.jp:00006945","sets":["6:617"]},"author_link":["18086","18089","18088","18087"],"item_6_alternative_title_14":{"attribute_name":"その他のタイトル","attribute_value_mlt":[{"subitem_alternative_title":"Resolutions of Singularities of Complex Analytic Hypersurfaces"}]},"item_6_biblio_info_6":{"attribute_name":"書誌情報","attribute_value_mlt":[{"bibliographicIssueDates":{"bibliographicIssueDate":"2020-08","bibliographicIssueDateType":"Issued"},"bibliographicIssueNumber":"1","bibliographicPageEnd":"16","bibliographicPageStart":"1","bibliographicVolumeNumber":"71","bibliographic_titles":[{"bibliographic_title":"北海道教育大学紀要. 自然科学編"}]}]},"item_6_description_3":{"attribute_name":"抄録","attribute_value_mlt":[{"subitem_description":"J. Milnor の名著“Singular points of complex hypersurfaces”, Princeton University Press (1968年)([3])における複素解析的超曲面に対するファイブレーション定理は,代数幾何学,複素多様体論,微分トポロジーの交錯するところに位置し,多くの分野の数学者に研究テーマやインスピレーションを与え続けている。特に,E. Brieskorn により,Milnor ファイブレーションの例からエキゾチック7次元球面の存在が示されたこと([2],[1])は衝撃的であった。その後,複素解析的超曲面に関しては,その特異点解消も大きな研究テーマとなっている。この小論では,岡睦雄著「複素および混合超曲面特異点入門」,丸善出版(2018年)([8])の定式化に基づき,通常爆発射とトーリック爆発射を用いた正則関数の良い特異点解消について,難解な部分を補った解説を試みる。最終節では,混合解析関数により定義される超曲面の研究への展望についても触れる。","subitem_description_type":"Abstract"}]},"item_6_full_name_2":{"attribute_name":"著者別名","attribute_value_mlt":[{"nameIdentifiers":[{"nameIdentifier":"18088","nameIdentifierScheme":"WEKO"}],"names":[{"name":"SAITO, Sachiko"}]},{"nameIdentifiers":[{"nameIdentifier":"18089","nameIdentifierScheme":"WEKO"}],"names":[{"name":"TAKASHIMIZU, Kosei"}]}]},"item_6_identifier_registration":{"attribute_name":"ID登録","attribute_value_mlt":[{"subitem_identifier_reg_text":"10.32150/00006939","subitem_identifier_reg_type":"JaLC"}]},"item_6_publisher_15":{"attribute_name":"出版者","attribute_value_mlt":[{"subitem_publisher":"北海道教育大学"}]},"item_6_source_id_7":{"attribute_name":"ISSN","attribute_value_mlt":[{"subitem_source_identifier":"13442570","subitem_source_identifier_type":"ISSN"}]},"item_6_source_id_9":{"attribute_name":"書誌レコードID","attribute_value_mlt":[{"subitem_source_identifier":"AA11273226","subitem_source_identifier_type":"NCID"}]},"item_6_version_type_12":{"attribute_name":"著者版フラグ","attribute_value_mlt":[{"subitem_version_resource":"http://purl.org/coar/version/c_970fb48d4fbd8a85","subitem_version_type":"VoR"}]},"item_creator":{"attribute_name":"著者","attribute_type":"creator","attribute_value_mlt":[{"creatorNames":[{"creatorName":"齋藤, 幸子"}],"nameIdentifiers":[{"nameIdentifier":"18086","nameIdentifierScheme":"WEKO"}]},{"creatorNames":[{"creatorName":"高清水, 公星"}],"nameIdentifiers":[{"nameIdentifier":"18087","nameIdentifierScheme":"WEKO"}]}]},"item_files":{"attribute_name":"ファイル情報","attribute_type":"file","attribute_value_mlt":[{"accessrole":"open_date","date":[{"dateType":"Available","dateValue":"2022-11-24"}],"displaytype":"detail","filename":"71-1-c01.pdf","filesize":[{"value":"11.8 MB"}],"format":"application/pdf","licensetype":"license_note","mimetype":"application/pdf","url":{"label":"71-1-c01.pdf","url":"https://hokkyodai.repo.nii.ac.jp/record/6945/files/71-1-c01.pdf"},"version_id":"651d6d9e-7db0-452d-84c3-53039e134a11"}]},"item_language":{"attribute_name":"言語","attribute_value_mlt":[{"subitem_language":"jpn"}]},"item_resource_type":{"attribute_name":"資源タイプ","attribute_value_mlt":[{"resourcetype":"departmental bulletin paper","resourceuri":"http://purl.org/coar/resource_type/c_6501"}]},"item_title":"複素解析的超曲面の特異点解消","item_titles":{"attribute_name":"タイトル","attribute_value_mlt":[{"subitem_title":"複素解析的超曲面の特異点解消"}]},"item_type_id":"6","owner":"2","path":["617"],"pubdate":{"attribute_name":"公開日","attribute_value":"2020-09-29"},"publish_date":"2020-09-29","publish_status":"0","recid":"6945","relation_version_is_last":true,"title":["複素解析的超曲面の特異点解消"],"weko_creator_id":"2","weko_shared_id":-1},"updated":"2023-06-20T16:25:25.268363+00:00"}